首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39992篇
  免费   8000篇
  国内免费   14565篇
化学   28808篇
晶体学   1731篇
力学   3064篇
综合类   1599篇
数学   6670篇
物理学   20685篇
  2024年   58篇
  2023年   370篇
  2022年   1470篇
  2021年   1435篇
  2020年   1406篇
  2019年   1399篇
  2018年   1364篇
  2017年   2016篇
  2016年   1476篇
  2015年   2207篇
  2014年   2594篇
  2013年   3382篇
  2012年   3305篇
  2011年   3607篇
  2010年   3642篇
  2009年   3691篇
  2008年   4169篇
  2007年   3602篇
  2006年   3618篇
  2005年   3021篇
  2004年   2418篇
  2003年   1622篇
  2002年   1770篇
  2001年   1736篇
  2000年   1956篇
  1999年   1040篇
  1998年   514篇
  1997年   408篇
  1996年   360篇
  1995年   318篇
  1994年   315篇
  1993年   318篇
  1992年   267篇
  1991年   220篇
  1990年   196篇
  1989年   184篇
  1988年   186篇
  1987年   163篇
  1986年   122篇
  1985年   88篇
  1984年   99篇
  1983年   85篇
  1982年   55篇
  1981年   50篇
  1980年   41篇
  1979年   44篇
  1978年   18篇
  1971年   12篇
  1965年   24篇
  1959年   16篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
81.
膜的动电特性研究中,往往采用流动电位方法。该方法中,Ag-Ag Cl测试电极的质量是影响测试准确性的关键要素。本文采用正交试验设计和方差分析,着重考察电解法制备Ag-Ag Cl电极过程中,电流强度(I)、氯化时间(t)、电解质溶液浓度(CHCl)、电极来源(n)、烘烤温度(T)、活化电极溶液浓度(CKCl)等因素对Ag-Ag Cl电极稳定性的影响。得到Ag-Ag Cl电极的最优制备参数为:电流密度3.0m A/cm2,氯化时间50min,盐酸浓度0.1mol·L-1,烘烤温度120℃,活化电极溶液(KCl)浓度0.001mol·L-1;最显著影响因素为电极来源,显著影响因素为氯化时间和烘烤温度。对最优条件组合下制备的AgAg Cl电极,进行了稳定性实验,结果表明:制备的电极具有较好的稳定性,24h内电极电位漂移量小于0.10mv,7天内电极电位漂移量小于0.2mv;在聚偏氟乙烯中空纤维超滤膜流动电位测试中,流动电位与流动压差具有良好的线性和可重复性,回归曲线R20.99,变化规律符合Helmholtz-Smoluehowski公式,可以较好满足膜的流动电位测试要求。  相似文献   
82.
Various aryl‐, alkenyl‐, and/or alkyllithium species reacted smoothly with aryl and/or benzyl ethers with cleavage of the inert C?O bond to afford cross‐coupled products, catalyzed by commercially available [Ni(cod)2] (cod=1,5‐cyclooctadiene) catalysts with N‐heterocyclic carbene (NHC) ligands. Furthermore, the coupling reaction between the aryllithium compounds and aryl ammonium salts proceeded under mild conditions with C?N bond cleavage in the presence of a [Pd(PPh3)2Cl2] catalyst. These methods enable selective sequential functionalizations of arenes having both C?N and C?O bonds in one pot.  相似文献   
83.
84.
The most common methodology used in element concentration measurement and analyzing of wear particles is Atomic emission (AE) spectroscopy .The present paper presents an evaluation method on wear in po...  相似文献   
85.
86.
在理论上通过推导得出了Black-Litterman模型(B-L模型)最优权重与信心水平的关系式.实证部分开创性地将多元时间序列VEC模型运用到B-L模型的观点收益预测中.结果表明:且通过向量误差修正模型,实证取得了较好的效果.在任意一种做空限制下,随着信心水平在0%~70%水平上升,收益率有连续上升的趋势,并逐渐趋稳;风险有并不明显的下降的趋势.对同一信心水平而言,随做空限制的放宽,收益率有上升趋势.  相似文献   
87.
利用n维有限射影空间上的一些性质,构作了组合群验的数学模型de-析取矩阵,并研究了它的参数和Hamming距离.  相似文献   
88.
林龙  邓振波  刘贤德 《发光学报》2015,36(4):449-453
采用水溶性银纳米颗粒附着在反型太阳能电池的电子传输层上,用以提高有机太阳能电池的短路电流。所制备的器件结构为ITO/ZnO/Ag NPs/P3HT(Poly 3-hexylthiophene):PC[60]BM/MoO3/Ag。其金属银纳米颗粒的表面等离激元在410 nm处出现了共振吸收峰,半峰全宽约为60 nm。器件的光电流在可见光范围内均有所增加,短路电流相对于标准器件提高了20.2%,光电转化效率相对提高了17.2%。  相似文献   
89.
设计并合成了掺杂不同Nd3+离子浓度的氟化镧纳米颗粒,并用油酸进行了表面修饰,使得这类纳米颗粒可分散于常见的有机溶剂中形成透明、均一、稳定的溶液。对纳米颗粒的结构、晶相以及发光性能进行了表征。固体和溶液材料在1 060 nm都有强的发射峰,说明纳米晶格可有效地保护Nd3+离子免受外界环境对发光的猝灭影响。纳米颗粒有机溶液的吸收损耗和散射损耗测试结果表明,其总损耗系数能够满足激光介质材料的损耗要求,为该材料的实用化打下了基础。  相似文献   
90.
噪声免疫腔增强光外差分子光谱技术(NICE-OHMS)是目前世界上最灵敏的激光吸收光谱技术,其在低压环境中具有极高的探测灵敏度。然而当测量样品处于大气压时,NICE-OHMS系统的探测灵敏度会大幅下降。主要原因之一是大气压下获取最大NICE-OHMS信号幅度的条件与低气压下不同。通过对大气压NICE-OHMS理论进行分析,分析了影响信号幅度的参数,并通过数值模拟来寻找最佳的实验条件。本文着重讨论影响信号的主要参数包括光学腔腔长L,调制系数β,探测相位θ。其中,由于在NICE-OHMS中使用DeVoe-Brewer技术将调制频率ν_m锁定到Fabry-Parot(FP)腔的自由光谱区(FSR)。因此FP腔的腔长决定了ν_m,同时还作用于信号幅度S■。模拟结果显示,当腔长增大时,由于ν_m随之减小,载波和边带的光谱成分相互重叠部分增大,因此线型函数的幅度逐渐减小。而吸收信号幅度随着腔长的增加而逐渐增加,色散信号幅度先增大后减小,并且在腔长等于8 cm时达到最大值。调制系数β会影响频率调制后激光载波和边带的幅度大小,并且影响信号线型。随着腔长的增加,最大信号幅度对应的β值也随之增加。在相同腔长下,色散信号的最佳β值小于吸收信号,更容易使用电光调制器实现。最后分析了参数的可实现性,分析了不同种类激光器的频率调谐能力,压电陶瓷的扫描宽度等。以乙炔气体为例,大气压下NICE-OHMS的谱线半宽达到~3 GHz,而光谱覆盖范围大于10 GHz。分布反馈式半导体激光器(DFB)与外腔二极管激光器(ECDL)的频率调谐范围可以达到30 GHz以上,但是由于激光线宽宽,得到的PDH锁定性能欠佳。回音壁模式激光器(WGM)和掺饵光纤激光器(EDFL)线宽为百Hz量级,是目前高灵敏NICE-OHMS系统中常用的光源。但是WGM目前可以实现了5 GHz的激光频率调谐范围,而EDFL的外部电压可控制的调谐范围仅为3 GHz。使用精细度为55000的腔进行模拟,调制系数β=1,腔长大于8 cm时,可使用WGM激光器实现,腔长大于25 cm时,可以使用EDFL激光器实现。而对于在设计光学腔中常用的伸缩长度为25μm的PZT,随着腔长的增加,对应的腔模频移范围逐渐减小,在腔长为典型的40 cm时,扫描范围大于12 GHz。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号